Silver Block Intersection Graphs of Steiner 2-Designs

نویسندگان

  • A. Ahadi
  • Nazli Besharati
  • Ebadollah S. Mahmoodian
  • M. Mortezaeefar
چکیده

For a block design D, a series of block intersection graphs Gi, or i-BIG(D), i = 0, . . . , k is defined in which the vertices are the blocks of D, with two vertices adjacent if and only if the corresponding blocks intersect in exactly i elements. A silver graph G is defined with respect to a maximum independent set of G, called an α-set. Let G be an r-regular graph and c be a proper (r + 1)-coloring of G. A vertex x in G is said to be rainbow with respect to c if every color appears in the closed neighborhood N [x] = N(x)∪{x}. Given an α-set I of G, a coloring c is said to be silver with respect to I if every x ∈ I is rainbow with respect to c. We say G is silver if it admits a silver coloring with respect to some I. Finding silver graphs is of interest, for a motivation and progress in silver graphs see [7] and [15]. We investigate conditions for 0-BIG(D) and 1-BIG(D) of Steiner 2-designs D = S(2, k, v) to be silver. keywords: Silver coloring, Block intersection graph, Steiner 2-design, and Steiner triple system Subject class: 05C15, 05B05, 05B07, and 05C69

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton Decompositions of Block-Intersection Graphs of Steiner Triple Systems

Block-intersection graphs of Steiner triple systems are considered. We prove that the block-intersection graphs of non-isomorphic Steiner triple systems are themselves non-isomorphic. We also prove that each Steiner triple system of order at most 15 has a Hamilton decomposable block-intersection graph.

متن کامل

Block-Intersection Graphs of Steiner Triple Systems

A Steiner triple system of order n is a collection of subsets of size three, taken from the n-element set {0, 1, ..., n−1}, such that every pair is contained in exactly one of the subsets. The subsets are called triples, and a block-intersection graph is constructed by having each triple correspond to a vertex. If two triples have a non-empty intersection, an edge is inserted between their vert...

متن کامل

The intersection problem for small G-designs

A G-design of order n is a pair (P, B) where P is the vertex set of the complete graph Kn and B is an edge-disjoint decomposition of Kn into isomorphic copies of the simple graph G. Following terminology, we call these copies "blocks". Given a particular the intersection problem asks for which k is it possible to find two (P, Bl) and (P, B 2) of order n, with IBI n B21 = k, that is, with k comm...

متن کامل

Existentially Closed BIBD Block-Intersection Graphs

A graph G with vertex set V is said to be n-existentially closed if, for every S ⊂ V with |S| = n and every T ⊆ S, there exists a vertex x ∈ V − S such that x is adjacent to each vertex of T but is adjacent to no vertex of S − T . Given a combinatorial design D with block set B, its block-intersection graph GD is the graph having vertex set B such that two vertices b1 and b2 are adjacent if and...

متن کامل

The watchman's walk of Steiner triple system block intersection graphs

A watchman’s walk in a graph G = (V,E) is a minimum closed dominating walk. In this paper, it is shown that the number of vertices in a watchman’s walk on the block intersection graph of a Steiner triple system is between v−3 4 and v−7 2 , for admissible v ≥ 15. Included are constructions to build a design that achieves the minimum bound for any admissible v.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013